TY - BOOK AU - Cai,Wei TI - Computational methods for electromagnetic phenomena: electrostatics in solvation, scattering, and electron transport SN - 9781107021051 U1 - 537.0151 23 KW - Electromagnetism KW - Mathematical models KW - Electrostatics KW - Electron transport KW - TECHNOLOGY & ENGINEERING / Engineering (General) KW - bisacsh KW - Ele KW - May2013 N1 - Includes bibliographical references and index; Machine generated contents note: Part I. Electrostatics in Solvations: 1. Dielectric constant and fluctuation formulae for molecular dynamics; 2. Poisson-Boltzmann electrostatics and analytical approximations; 3. Numerical methods for Poisson-Boltzmann equations; 4. Fast algorithms for long-range interactions; Part II. Electromagnetic Scattering: 5. Maxwell equations, potentials, and physical/artificial boundary conditions; 6. Dyadic Green's functions in layered media; 7. High order methods for surface electromagnetic integral equations; 8. High order hierarchical Nedelec edge elements; 9. Time domain methods - discontinuous Galerkin method and Yee scheme; 10. Computing scattering in periodic structures and surface plasmons; 11. Solving Schr�odinger equations in waveguides and quantum dots; Part III. Electron Transport: 12. Quantum electron transport in semiconductors; 13. Non-equilibrium Green's function (NEGF) methods for transport; 14. Numerical methods for Wigner quantum transport; 15. Hydrodynamics electron transport and finite difference methods; 16. Transport models in plasma media and numerical methods N2 - "A unique and comprehensive graduate text and reference on numerical methods for electromagnetic phenomena, from atomistic to continuum scales, in biology, micro-to-optical waves, photonics, nanoelectronics and plasmas. The state-of-the-art numerical methods described include: Statistical fluctuation formula for the dielectric constant; Particle-Mesh-Ewald, Fast-Multipole-Method and image-based reaction field method for long-range interactions; High order singular/hypersingular (Nystr�om collocation/Galerkin) boundary and volume integral methods in layered media for Poisson-Boltzmann electrostatics, electromagnetic wave scattering and electron density waves in quantum dots; Absorbing and UPML boundary conditions; High order hierarchical N�ed�elec edge elements; High order discontinuous Galerkin (DG) and Yee finite difference time-domain methods; Finite element and plane wave frequency-domain methods for periodic structures; Generalized DG beam propagation method for optical waveguides; NEGF(Non-equilibrium Green's function) and Wigner kinetic methods for quantum transport; High order WENO and Godunov and central schemes for hydrodynamics transport; Vlasov-Fokker-Planck and PIC and constrained MHD transport in plasmas"-- ER -