Large strain finite element method : (Record no. 22231)

MARC details
000 -LEADER
fixed length control field 09882cam a22003375a 4500
001 - CONTROL NUMBER
control field 18221489
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20201128023814.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 140711s2015 enka frb 001 0 eng d
010 ## - LIBRARY OF CONGRESS CONTROL NUMBER
LC control number 2014027705
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781118405307
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 1118405307
040 ## - CATALOGING SOURCE
Original cataloging agency DLC
Language of cataloging eng
Transcribing agency DLC
Modifying agency EG-ScBUE
042 ## - AUTHENTICATION CODE
Authentication code pcc
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER
Edition number 23
Classification number 620.11230151825
Item number MUN
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Munjiza, Antonio A.‏
9 (RLIN) 40869
245 10 - TITLE STATEMENT
Title Large strain finite element method :
Remainder of title a practical course /
Statement of responsibility, etc Antonio Munjiza, Esteban Rougier, Earl E. Knight.
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication, distribution, etc West Sussex :
Name of publisher, distributor, etc Wiley,
Date of publication, distribution, etc 2015.
300 ## - PHYSICAL DESCRIPTION
Extent xiv, 469 p. :
Other physical details ill. ;
Dimensions 24 cm.
500 ## - GENERAL NOTE
General note Index : p. 461-469.
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc Includes bibliographical references.
505 ## - FORMATTED CONTENTS NOTE
Formatted contents note PART ONE FUNDAMENTALS, 1 Introduction : 1.1 Assumption of Small Displacements -- 1.2 Assumption of Small Strains -- 1.3 Geometric Nonlinearity -- 1.4 Stretches -- 1.5 Some Examples of Large Displacement Large Strain Finite Element Formulation -- 1.6 The Scope and Layout of the Book -- 1.7 Summary -- 2 Matrices : 2.1 Matrices in General -- 2.2 Matrix Algebra -- 2.3 Special Types of Matrices -- 2.4 Determinant of a Square Matrix -- 2.5 Quadratic Form -- 2.6 Eigenvalues and Eigenvectors -- 2.7 Positive Definite Matrix -- 2.8 Gaussian Elimination -- 2.9 Inverse of a Square Matrix -- 2.10 Column Matrices -- 2.11 Summary -- 3 Some Explicit and Iterative Solvers : 3.1 The Central Difference Solver -- 3.2 Generalized Direction Methods -- 3.3 The Method of Conjugate Directions -- 3.4 Summary -- 4 Numerical Integration -- 4.1 Newton-Cotes Numerical Integration -- 4.2 Gaussian Numerical Integration -- 4.3 Gaussian Integration in 2D -- 4.4 Gaussian Integration in 3D -- 4.5 Summary -- 5 Work of Internal Forces on Virtual Displacements -- 5.1 The Principle of Virtual Work -- 5.2 Summary -- PART TWO PHYSICAL QUANTITIES, 6 Scalars : 6.1 Scalars in General -- 6.2 Scalar Functions -- 6.3 Scalar Graphs -- 6.4 Empirical Formulas -- 6.5 Fonts -- 6.6 Units -- 6.7 Base and Derived Scalar Variables -- 6.8 Summary -- 7 Vectors in 2D : 7.1 Vectors in General -- 7.2 Vector Notation -- 7.3 Matrix Representation of Vectors -- 7.4 Scalar Product -- 7.5 General Vector Base in 2D -- 7.6 Dual Base -- 7.7 Changing Vector Base -- 7.8 Self-duality of the Orthonormal Base -- 7.9 Combining Bases -- 7.10 Examples -- 7.11 Summary -- 8 Vectors in 3D : 8.1 Vectors in 3D -- 8.2 Vector Bases -- 8.3 Summary -- 9 Vectors in n-Dimensional Space : 9.1 Extension from 3D to 4-Dimensional Space -- 9.2 The Dual Base in 4D -- 9.3 Changing the Base in 4D -- 9.4 Generalization to n-Dimensional Space -- 9.5 Changing the Base in n-Dimensional Space -- 9.6 Summary -- 10 First Order Tensors : 10.1 The Slope Tensor -- 10.2 First Order Tensors in 2D -- 10.3 Using First Order Tensors -- 10.4 Using Different Vector Bases in 2D -- 10.5 Differential of a 2D Scalar Field as the First Order Tensor -- 10.6 First Order Tensors in 3D -- 10.7 Changing the Vector Base in 3D -- 10.8 First Order Tensor in 4D -- 10.9 First Order Tensor in n-Dimensions -- 10.10 Differential of a 3D Scalar Field as the First Order Tensor -- 10.11 Scalar Field in n-Dimensional Space -- 10.12 Summary -- 11 Second Order Tensors in 2D : 11.1 Stress Tensor in 2D -- 11.2 Second Order Tensor in 2D -- 11.3 Physical Meaning of Tensor Matrix in 2D -- 11.4 Changing the Base -- 11.5 Using Two Different Bases in 2D -- 11.6 Some Special Cases of Stress Tensor Matrices in 2D -- 11.7 The First Piola-Kirchhoff Stress Tensor Matrix -- 11.8 The Second Piola-Kirchhoff Stress Tensor Matrix -- 11.9 Summary -- 12 Second Order Tensors in 3D : 12.1 Stress Tensor in 3D -- 12.2 General Base for Surfaces -- 12.3 General Base for Forces -- 12.4 General Base for Forces and Surfaces -- 12.5 The Cauchy Stress Tensor Matrix in 3D -- 12.6 The First Piola-Kirchhoff Stress Tensor Matrix in 3D -- 12.7 The Second Piola-Kirchhoff Stress Tensor Matrix in 3D -- 12.8 Summary -- 13 Second Order Tensors in nD : 13.1 Second Order Tensor in n-Dimensions -- 13.2 Summary -- PART THREE DEFORMABILITY AND MATERIAL MODELING, 14 Kinematics of Deformation in 1D -- 14.1 Geometric Nonlinearity in General -- 14.2 Stretch -- 14.3 Material Element and Continuum Assumption -- 14.4 Strain -- 14.5 Stress -- 14.6 Summary -- 15 Kinematics of Deformation in 2D, 15.1 Isotropic Solids -- 15.2 Homogeneous Solids -- 15.3 Homogeneous and Isotropic Solids -- 15.4 Nonhomogeneous and Anisotropic Solids -- 15.5 Material Element Deformation -- 15.6 Cauchy Stress Matrix for the Solid Element -- 15.7 Coordinate Systems in 2D -- 15.8 The Solid- and the Material-Embedded Vector Bases -- 15.9 Kinematics of 2D Deformation -- 15.10 2D Equilibrium Using the Virtual Work of Internal Forces -- 15.11 Examples -- 15.12 Summary -- 16 Kinematics of Deformation in 3D : 16.1 The Cartesian Coordinate System in 3D -- 16.2 The Solid-Embedded Coordinate System -- 16.3 The Global and the Solid-Embedded Vector Bases -- 16.4 Deformation of the Solid -- 16.5 Generalized Material Element -- 16.6 Kinematic of Deformation in 3D -- 16.7 The Virtual Work of Internal Forces -- 16.8 Summary -- 17 The Unified Constitutive Approach in 2D : 17.1 Introduction -- 17.2 Material Axes -- 17.3 Micromechanical Aspects and Homogenization -- 17.4 Generalized Homogenization -- 17.5 The Material Package -- 17.6 Hyper-Elastic Constitutive Law -- 17.7 Hypo-Elastic Constitutive Law -- 17.8 A Unified Framework for Developing Anisotropic Material Models in 2D -- 17.9 Generalized Hyper-Elastic Material -- 17.10 Converting the Munjiza Stress Matrix to the Cauchy Stress Matrix -- 17.11 Developing Constitutive Laws -- 17.12 Generalized Hypo-Elastic Material -- 17.13 Unified Constitutive Approach for Strain Rate and Viscosity -- 17.14 Summary -- 18 The Unified Constitutive Approach in 3D : 18.1 Material Package Framework -- 18.2 Generalized Hyper-Elastic Material -- 18.3 Generalized Hypo-Elastic Material -- 18.4 Developing Material Models -- 18.5 Calculation of the Cauchy Stress Tensor Matrix -- 18.6 Summary -- PART FOUR THE FINITE ELEMENT METHOD IN 2D, 2D Finite Element: Deformation Kinematics Using the Homogeneous Deformation Triangle : 19.1 The Finite Element Mesh -- 19.2 The Homogeneous Deformation Finite Element -- 19.3 Summary -- 20 2D Finite Element: Deformation Kinematics Using Iso-Parametric Finite Elements : 20.1 The Finite Element Library -- 20.2 The Shape Functions -- 20.3 Nodal Positions -- 20.4 Positions of Material Points inside a Single Finite Element -- 20.5 The Solid-Embedded Vector Base -- 20.6 The Material-Embedded Vector Base -- 20.7 Some Examples of 2D Finite Elements -- 20.8 Summary -- 21 Integration of Nodal Forces over Volume of 2D Finite Elements : 21.1 The Principle of Virtual Work in the 2D Finite Element Method -- 21.2 Nodal Forces for the Homogeneous Deformation Triangle -- 21.3 Nodal Forces for the Six-Noded Triangle -- 21.4 Nodal Forces for the Four-Noded Quadrilateral -- 21.5 Summary -- 22 Reduced and Selective Integration of Nodal Forces over Volume of 2D Finite Elements : 22.1 Volumetric Locking -- 22.2 Reduced Integration -- 22.3 Selective Integration -- 22.4 Shear Locking -- 22.5 Summary -- PART FIVE THE FINITE ELEMENT METHOD IN 3D, 23 3D Deformation Kinematics Using the Homogeneous Deformation Tetrahedron Finite Element : 23.1 Introduction -- 23.2 The Homogeneous Deformation Four-Noded Tetrahedron Finite Element -- 23.3 Summary -- 24 3D Deformation Kinematics Using Iso-Parametric Finite Elements : 24.1 The Finite Element Library -- 24.2 The Shape Functions -- 24.3 Nodal Positions -- 24.4 Positions of Material Points inside a Single Finite Element -- 24.5 The Solid-Embedded Infinitesimal Vector Base -- 24.6 The Material-Embedded Infinitesimal Vector Base -- 24.7 Examples of Deformation Kinematics -- 24.8 Summary -- 25 Integration of Nodal Forces over Volume of 3D Finite Elements : 25.1 Nodal Forces Using Virtual Work -- 25.2 Four-Noded Tetrahedron Finite Element -- 25.3 Reduce Integration for Eight-Noded 3D Solid -- 25.4 Selective Stretch Sampling-Based Integration for the Eight-Noded Solid Finite Element -- 25.5 Summary -- 26 Integration of Nodal Forces over Boundaries of Finite Elements : 26.1 Stress at Element Boundaries -- 26.2 Integration of the Equivalent Nodal Forces over the Triangle Finite Element -- 26.3 Integration over the Boundary of the Composite Triangle -- 26.4 Integration over the Boundary of the Six-Noded Triangle -- 26.5 Integration of the Equivalent Internal Nodal Forces over the Tetrahedron Boundaries -- 26.6 Summary -- PART SIX THE FINITE ELEMENT METHOD IN 2.5D, 27 Deformation in 2.5D Using Membrane Finite Elements : 27.1 Solids in 2.5D -- 27.2 The Homogeneous Deformation Three-Noded Triangular Membrane Finite Element -- 27.3 Summary -- 28 Deformation in 2.5D Using Shell Finite Elements : 28.1 Introduction -- 28.2 The Six-Noded Triangular Shell Finite Element -- 28.3 The Solid-Embedded Coordinate System -- 28.4 Nodal Coordinates -- 28.5 The Coordinates of the Finite Element s Material Points -- 28.6 The Solid-Embedded Infinitesimal Vector Base -- 28.7 The Solid-Embedded Vector Base versus the Material-Embedded Vector Base -- 28.8 The Constitutive Law -- 28.9 Selective Stretch Sampling Based Integration of the Equivalent Nodal Forces -- 28.10 Multi-Layered Shell as an Assembly of Single Layer Shells -- 28.11 Improving the CPU Performance of the Shell Element -- 28.12 Summary
520 ## - SUMMARY, ETC.
Summary, etc An introductory approach to the subject of large strains and large displacements in finite elements.<br/>
650 #7 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Finite element method.
Source of heading or term BUEsh
9 (RLIN) 2126
650 #7 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Stress-strain curves.
Source of heading or term BUEsh
9 (RLIN) 40870
650 #7 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Deformations (Mechanics)
General subdivision Mathematical models.
Source of heading or term BUEsh
9 (RLIN) 3933
651 ## - SUBJECT ADDED ENTRY--GEOGRAPHIC NAME
Source of heading or term BUEsh
653 ## - INDEX TERM--UNCONTROLLED
Resource For college Engineering, Electrical
Arrived date list August 2016
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Rougier, Esteban‏.
9 (RLIN) 40879
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Knight, Earl E.
9 (RLIN) 40880
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Edition 22
Call number prefix 620.11230151825 MUN
952 ## - LOCATION AND ITEM INFORMATION (KOHA)
-- 2016-08-24
Holdings
Withdrawn status Item status Source of classification or shelving scheme Damaged status Not for loan Vendor Home library Current library Shelving location Date acquired Source of acquisition Cost, normal purchase price Serial Enumeration / chronology Total Checkouts Full call number Barcode Date last seen Date last borrowed Cost, replacement price Koha item type
    Dewey Decimal Classification     Academic Bookshop Central Library Central Library First floor 24/08/2016 Purchase 910.00 9155 2 620.11230151825 MUN 000033159 11/06/2024 11/03/2019 1137.50 Book - Borrowing